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1 SpaOTsc model

1.1 Optimal transport

Optimal transport theory finds an optimal (under predefined cost) trans-

portation plans from a distribution to another.

1.1.1 The unbalanced structured optimal transport

Consider a problem where the two distributions to be mapped are dis-

cretely represented by vectors ω1 ∈ R
n and ω2 ∈ R

m. Let M ∈ R
n×m,

A1 ∈ R
n×n, and A2 ∈ R

m×m be dissimilarity measurements for bins across

two distributions and within each distribution. A transport plan can be rep-

resented by γ ∈ R
n×m
+ which specifies how much mass from each bin of

one distribution is transported to each bin of the other distribution indi-

cating a mapping between the two datasets. Measurements of different

aspects are defined to assess the quality of transport plans. The major

one is the transport cost defined as

Etransport =< γ,M >F . (1)

Since scRNA-seq data and spatial data are usually not from the same

samples and there are cells lost in experiments, we should allow unbal-

anced transport, i.e. the transport desinations of a bin do not need to add

up to the same mass of this bin. This is realized by using a penalty term
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for the unbalance in γ instead of strict constraint.[6] Kullback-Leibler (KL)

divergence is used to measure the divergence of two measures

KL(h|p) =
∑

i

hi log

(
hi

pi

)
− hi + pi. (2)

The penalty term for unbalance in γ is defined based on KL divergence

Eunbalance = KL(γ1m|ω1) + KL(γT1n|ω2). (3)

The Gromov-Wasserstein (GW) distance measures difference between

metric spaces.[16] In other words, it focuses on how well the intra-dataset

relationship is preserved by the mapping. The GW loss is defined as

Estructure =
∑

i,j,k,ℓ

L(A1(i, k),A2(j, ℓ))γi,jγk,ℓ. (4)

A linear combination of Eq. 1 and 4 has been proposed for structured

data.[24]. In practice, a regularization term is often used to accelerate

convergence of the algorithm. The entropy regularization term is defined

as

H(γ) =
∑

i,j

γi,j log(γi,j). (5)

The three loss terms defined above assemble to the total loss for finding

the mapping between scRNA-seq data and spatial data.

argmin
γ∈Rn×m

+

(1− α)Etransport + ρEunbalance + αEstructure. (6)

1.1.2 Wasserstein distances

The optimal transport framework naturally provides a measurement for dif-

ference between distributions. We use this distance to measure (1) dis-

tance between spatial distributions of individual cells as indicator of spatial

distance between cells and (2) distance between spatial gene expression

patterns. In the later application, we can both quantify this distance on

the original geometry or directly on the single cell data paired with cell-cell

spatial distances. The Wasserstein distance is defined as

dW(ω1,ω2,M) = min
γ∈Rn×m

+

< γ,M >F . (7)
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It is often solved with an entropy term defined in Eq. 5. The outcome of this

regularized version is called Sinkhorn distance which is an approximation

to Wasserstein distance. Note that when the cost matrix satisfies to be a

metric, this distance is also a metric. In SpaOTsc, Wasserstein distance is

used to compute distances between single cells based on distance matrix

of spatial locations resulting in a distance matrix for single cells satisfying

to be a metric. This distance matrix for single cells is further used as the

cost matrix when characterizing differences between genes thus resulting

in a metric for spatial expression patterns of genes.

1.1.3 Numerical approximation

We focus on the case L = L2 which results in a quadratic optimization

problem and follow the optimization scheme given in [24]. The transport

part and structure part in Eq. 6 can be written as

fℓ(γ) =< (1− α)M+ αL ⊗ γ,γ >F, (8)

where Li,j,k,ℓ = L
(
A1(i, j),A2(k, ℓ)

)
and L ⊗ γ =

(∑
k,ℓ

Li,j,k,ℓγk,ℓ

)
i,j

. The

proposition 1 in [16] suggests that if L can be written as

L(a, b) = f1(a) + f2(b)− h1(a)h2(b)

for some functions f1, f2, h1, h2, then L ⊗ γ can be decomposed as

L ⊗ γ = cA1,A2
− h1(A1)γh2(A2)

T ,

where cA1,A2
is independent of γ. This property provides an efficient way

of calculating L ⊗ γ. When the quadratic loss L2(a, b) =
1
2
(a− b)2 is used,

the functions can be constructed as

f1(x) = f2(x) = x2/2,

h1(x) = h2(x) = x.
(9)

Proposition 2 in [16] gives the gradient of the Gromov-Wasserstein part of

the loss function,

∇γ < L ⊗ γ,γ >= 2L ⊗ γ.

So the gradient of the loss function in Eq. 8 can be computed as

∇γfℓ = (1− α)M+ 2αL ⊗ γ. (10)
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The Frank-Wolfe algorithm is used to find local minima. The direction-

finding subproblem in the algorithm can be regarded as an optimal trans-

port problem

pk = argmin
p∈Γ

< (1− α)M+ 2αL ⊗ γk−1,p > +ρEunbalance. (11)

Here we substitute the usual strict restriction of mass conservation by the

soft penalty term Eunbalance to allow unbalance transport. This problem is

solved following [6]. Then a step size τ is determined which minimizes

fℓ(γk−1 + τ(pk − γk−1)) subject to τ ∈ [0, 1] where the function can be

written as

fℓ(γk−1 + τ(pk − γk−1))

= < (1− α)M+ αcA1,A2
− αA1(γk−1 + τ(pk − γk−1))A

T
2 ,γk−1 + τ(pk − γk−1) >

= < (1− α)M+ αcA1,A2
,γk−1 >

+τ < (1− α)M+ αcA1,A2
− 2αA1γk−1A

T
2 ,pk − γk−1 >

+τ2 < −αA1(pk − γk−1)A
T
2 ,pk − γk−1 > .

Some terms are combined assuming A1 and A2 are symmetric. Let τ ∗

be the minimizer satisfying 0 ≤ τ ∗ ≤ 1. The new transport plan is updated

as γk = τ ∗pk + (1− τ ∗)γk−1.

1.2 Acceleration by approximations

1.2.1 Approximation of Wasserstein distance with landmark points

When computing spatial distance between individual cells, we accelerate

the computation by approximating the spatial geometry with fewer land-

mark points. We follow a method proposed to approximate the topology

induced by point clouds.[7]. When the spatial locations are regarded as

a point cloud, the algorithm initializes by randomly selecting a point from

the point cloud as a landmark point. We call the points in the point cloud

that are not landmark points the candidate points. At each step, we first

compute the shortest distance from each candidate point to the collection

of landmark points. Then a candidate point with the largest shortest dis-

tance is selected as a landmark point. This process is iterated until the

target number of landmark points is achieved. The information carried by
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the non-landmark points are assigned to the nearest landmark points. Op-

timal transport is computed on landmark points as an approximation for

the distance computed on the original point cloud.

1.2.2 Approximation of geodesic distances

Tissues often have nontrivial shapes which motivates the use of geodesic

distances for spatial locations. To efficiently approximate the geodesic

distances between spatial locations of in situ data, we construct a graph

based on k-nearest neighbors and compute the lengths of shortest paths.

Given a collection of points with their spatial coordinates, we first build a

k-nearest neighbor graph based on the Euclidean distance which is also

used as edge weights. If there are separate connected subgraphs, an

edge is added between two closest points from each pair of such sub-

graphs. Now we have a path-connected graph with nodes representing the

points. The shortest path length between each two nodes on this graph

is computed to approximate geodesic distances between points. This ap-

proximate geodesic distance matrix is denoted by Dgeo(X, k) where k is

the number of nearest neighbors used and X is the point cloud.

1.3 Mapping between spatial data and single-cell data

Consider a single cell dataset with n cells and a spatial dataset with m
spatial locations. To initialize the computation of optimal transport, we

first need to construct the distance matrices M,A1,A2 listed at the begin-

ning of Section 1.1.1. To compute the similarity of two binary vectors x

and y, we use Matthews correlation coefficient. Spearman’s rank-order

correlation coefficient is used for numerical valued vectors. Both correla-

tion coefficients ranges from −1 for totally opposite relation to 1 for perfect

match. When number of genes of moderate, we directly apply these cor-

relation coefficients to the gene expression vectors. A pre-processing is

carried out to reduce the dimensionality when a large number of genes are

involved. Within a dataset, for example the scRNA-seq data, we use prin-

cipal component analysis to map the data onto a lower dimensional space

to robustly quantify differences between individual cells. When compar-

ing across datasets, we use canonical correlation analysis to map both

datasets onto a common low dimensional space following [4]. The correla-
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tion coefficients are transformed into a distance measurement by applying

a exponential function (e−c − e−1)/(e− e−1).
Once we have the distance matrices, we solve the optimization problem

in Eq. 6. The optimal transport plan γ∗ ∈ R
n×m
+ is a matrix serving as

mapping between the data sets (n single cells and m spatial locations).

The entry γ∗
i,j depicts the likelihood of cell i originated from location j.

This map is used to reconstruct spatial gene expressions by γ̂∗T ∗g where

g ∈ R
n,ng is a matrix recording gene expressions in single-cell data and γ̂∗

is column normalized (each column sums to 1) version of γ∗. The location

of the maximum entry of each row of γ∗ delivers a prediction of spatial

origin of the single cell corresponding to this row.

1.4 Spatial distance between single cells

Using the cost matrix constructed in the previous section, we obtain a

transport matrix γ∗ ∈ R
n×m
+ connecting scRNAseq data with n cells and

spatial data with m locations. Let Dspa ∈ R
m×m
+ be a distance matrix be-

tween spatial locations. The spatial distance between two single cells i
and j is indicated by the Wasserstein distance:

D̂sc(i, j) = dW(γ̄∗
i, γ̄

∗
j,Dspa), (12)

where γ̄∗
i is the ith row of γ∗ normalized to have a sum of 1.

The spatial distance matrix of single cells D̂sc directly leads to sev-

eral applications. (1) Spatially meaningful low dimensional visualization of

single-cell data is obtained by feeding the D̂sc to dimension reduction al-

gorithms that can work with distance matrices, such as tSNE and UMAP.

(2) Spatially localized sub-populations of cells are identified by perform-

ing sub-clustering based on D̂sc within cell clusters determined in previous

single-cell data analysis.

1.5 Clustering of spatial gene expression patterns

In this section, we discuss the quantitative comparison of gene expression

patterns using optimal transport. Since the setup of computational optimal

transport does not explicitly require geometry, we can directly compare us-

ing single cell data in addition to comparing using predicted spatial expres-

sions. In the case of comparing directly in single cell data, let ga,gb ∈ R
n
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be the vectors of expression of these two genes in individual cells, and

D̂sc ∈ R
n×n be the spatial distance between in the single cells. The differ-

ence of spatial gene expression pattern is quantified by dW(ga,gb, D̂sc), the

Wasserstein distance defined in Eq. 7. The inputs ga and gb are normal-

ized first to have sum of 1. The case of comparing spatial expression in the

original geometry is similar with the inputs being the normalized expres-

sion across spatial locations and the distance matrix explicitly constructed

using geodesic distance in the original geometry. A python implementation

[23] of louvain clustering algorithm [2] with the RBConfiguration method

[18] is used to cluster the genes based on a neighborhood graph built with

the quantified spatial pattern differences.

1.6 Weight kernels

Thresholding is often used in analysis of genes or spatial relationships.

To avoid the unstability caused by hard thresholding, we use continuous

kernel functions to assign weights that reflects spatial relations. These

smooth weight functions have shown to outperform hard cutoffs in mod-

eling protein structures [28]. We list two commonly used weight kernels

here. The exponential kernel and the generalized Lorentz kernel are de-

fined as
φExp(‖xi − xj‖; η, ν) = e−(‖xi−xj‖/η)ν ,

φLorentz(‖xi − xj‖; η, ν) =
1

1 + (‖xi − xj‖/η)ν
,

(13)

where η is a scaling parameter analogous to the cutoff distance in hard

thresholding approaches and the parameter ν controls the steepness of

decay near η. These kernels can also be used to substitute hard thresh-

olding of significance as φ(1/s; 1/η, ν) with s being a signal which is con-

sidered significant when exceeds the scaling parameter η. The weight

kernels will be used throughout the following analysis methods.

1.7 Intercellular gene-gene regulatory information flow

Consider two variables depicting the expression of a gene in the spatial

neighborhoods of cells and the expression of a gene in the cells. We quan-

tify how much information about the second variable is provided by the first.
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We call this intercellular gene-gene information flow in the sense of infor-

mation theory. In the following sections, we call the genes corresponding

to the variables the source gene and the target gene respectively. Note

that the source gene and the target gene can be the same, in which case,

we are measuring a non-linear analog of spatial autocorrelation.

1.7.1 Mutual information

The entropy of a random variable X measures how much information it

carries and can be written as

H(X) =
∑

x∈X

−p(x) log2(p(x)). (14)

The base 2 of the logarithm results in the units of shannons. There are

other choices that lead to other information units. The conditional entropy

can be defined in a similar manner,

H(X|Y ) =
∑

x∈X,y∈Y

−p(x, y) log2

(
p(x, y)

p(y)

)
. (15)

Conditional entropy measures how much information is carried in X that

cannot be told by observing Y . Also, the joint entropy can be written as

H(X, Y ) =
∑

x∈X,y∈Y

−p(x, y) log2(p(x, y)). (16)

Then, the mutual information between X and Y measures how much infor-

mation does observing one variable provide about the other can be com-

puted by

I(X;Y ) =
∑

x∈X,y∈Y

−p(x, y) log2

(
p(x, y)

p(x)p(y)

)
. (17)

The mutual information can also be equivalently expressed by the entropy

terms,
I(X;Y ) = H(X) +H(Y )−H(X, Y )

= H(X, Y )−H(X|Y )−H(Y |X)

= H(X)−H(X|Y )

= H(Y )−H(Y |X).

(18)
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1.7.2 Partial information decomposition

We are interested in the case with three variables X, Y, Z in this applica-

tion. Specifically, we seek to inquire how much unique information is pro-

vided about Z by observing Y when X is already observed. Partial infor-

mation decomposition (PID) is proposed by Paul and Randall [27]. When

considering X and Y together, we can measure how much information is

provided about Z by X and Y using mutual information I(Z;X, Y ). PID

states that the information provided by X and Y about Z can be classified

into 4 categories: (1-2) uniquely provided by X or Y that the other variable

can not provide (unique information), (3) jointly provided by X and Y that

they can not provide alone (synergy), and (4) both X and Y can provide

alone (redundancy). PID seeks to decompose I(Z;X, Y ) into these four

parts to decipher the detailed information flow among the three variables.

The decomposition can be expressed as

I(Z;X, Y ) = UnqX(Z;Y ) + UnqY (Z;X)

+ Syn(Z;X, Y ) + Rdn(Z;X, Y ).
(19)

We briefly go over one formulation of the decomposition by [27] which

starts by computing redundancy. The mutual information between Z and

X can be decomposed by each outcome of Z as

I(Z;X) =
∑

z∈Z

p(z)Ispec(Z = z;X). (20)

The term Ispec is called the specific information,

Ispec(Z = z;X) =
∑

x∈X

p(x|z)

(
log2

(
1

p(z)

)
− log2

(
1

p(z|x)

))
. (21)

Then the redundancy Rdn(Z;X, Y ) is quantified by

Imin(Z;X, Y ) =
∑

z∈Z

p(z) min
S∈{X,Y }

Ispec(Z = z;S). (22)

This construction relies on the perspective that the minimum information

provided by the sources reflects the common information and thus redun-

dancy. Once redundancy is computed, the unique information can be com-

puted as

UnqX(Z;Y ) = I(Z;Y )− Rdn(Z;X, Y ). (23)

The implementation (PID WB) in the python package discrete information

theory (dit) is used [11].

10



1.7.3 Information flow network construction

When applying PID to the inference of inter-cellular gene talks, we con-

sider a target gene Gtar, a source gene in the spatial neighborhoods G̃src,

and a collection of background genes G that are related to Gtar. The obser-

vation of G̃ under a spatial distance η can be constructed with the weight

kernels defined in Eq. 13,

g̃i =
∑

j

Wi,j ∗ gi

/∑

j

Wi,j, (24)

where Wi,j = φ(D̂sc(i, j); η, ν) for some positive ν. It is desirable to directly

compute UnqG(Gtar; G̃src) to assess the unique information about the target

gene provided by the expression of source gene in spatial neighborhoods

upon knowing the background genes. However, this decomposition can

quickly become computationally intractable as the lattice becomes huge

even with a moderate size of G. Fortunately, for a target gene and a set

of candidate source genes, we are able to compare the source genes

relatively. In other words, we can use the average unique information in

the three variable case instead,

u(Gsrc, Gtar, η) =
∑

G∈G

UnqG(Gtar; G̃src). (25)

As these analysis are carried out in the discrete setting of information the-

ory, we pre-processed the gene expression levels into discrete bins using

the implementation of Bayesian blocks [22] provided in the Astropy pack-

age [20, 17].

The score defined in Eq. 25 requires the computation of O(n3) par-

tial information decomposition which could become very time consuming

when the number of genes considered is large. We use a weighted spa-

tial correlation coefficient [5] as a pre-screening of significant pairs before

performing PID. The weighted spatial correlation coefficient is defined as

Rc =

(
x− µx

σx

)T

W

(
y − µy

σy

)
, (26)

where µ and σ are mean value and standard deviation and W is a spatial

weight matrix satisfying Wii = 0 and
∑

ij Wij = 1.
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1.8 Spatial distance for intercellular signaling

Intercellular signaling follows a general mechanism involving mainly lig-

ands, receptors and downstream genes. Based on this explicit mecha-

nism, we aim at inferring an effective spatial distance for known signaling.

To this end, we use ensemble of trees models which are interpretable and

are able to address the signaling mechanism.

1.8.1 Feature importance in random forest

Random forest is an ensemble of independently trained decision trees [3].

It is assumed that individual trees make different mistakes and their con-

sensus may achieve better performance. In practice, random forest is usu-

ally an efficient close match to state-of-the-art results in tasks with mod-

erate sample and feature size. Here, we briefly review the feature impor-

tance measurement in random forest regression models. A decision tree

is a tree with each node equipped with a criteria associated to a feature.

When a sample is fed to the tree, it flows from the root to a leaf which then

gives the predicted target value for this sample. An important score used

to build a decision tree, the impurity score of a node can be calculated as

NI =
1

N

N∑

i=1

|yi − ȳ|, (27)

where yi are the target values of the training samples that go through this

node and ȳ is the average of these values. The process of training a

decision tree can be roughly understood as choosing features to add new

nodes to the tree which mostly decrease the impurity. At the same time,

impurity scores can also be used to assess the importance of features.

The relative importance of a feature in a tree can be quantified by

FI =
∑

i∈N

(
NIi −

∑

j∈Ci

Nj

Ni

NIj

)
, (28)

where N is the index set for nodes associated to this feature, Ci is the

index set of for the child nodes of node i, and Nk is the number of training

samples that flow through node j. Then, the normalized importance of
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feature i in a tree can be computed as

NFIi = FIi

/ Nf∑

j=1

FIj, (29)

where Nf is the number of features in the tree. Then, the importance of a

feature across the whole forest can be simply quantified by an average of

its normalized feature importance in all the trees that assembles the forest.

The random forest implementation in scikit-learn is used.[15]

1.8.2 Inference of spatial signaling range

Here, we build random forest regression models that predict the expres-

sion of a target gene A (a downstream gene in a signaling) based on a

collection of genes within the same cell that are closely related to A and

the expression of gene B (the ligand in this signaling) in the neighborhood.

The samples are weighted by the expression level of the receptor(s) in-

volved in the signaling. Specifically, the sample weights are constructed

as

wi = φ(Ri; ηr, ν), (30)

where ηr is a scaling parameter deciding whether the receptor is signifi-

cantly expressed and ν is a negative integer. Given a spatial distance η,

we first construct a weight matrix W ∈ R
n×n for the cells,

Wi,j =

{
φ(D̂(i, j); η, ν), i 6= j,

0, i = j
(31)

where D̂(i, j) is the inferred spatial distance between cell i and j and φ
is the kernel function defined in Eq. 13 with a positive ν. Let W̄ be the

row normalized matrix of W, i.e. W̄i,j = Wi,j/
∑

j Wi,j. The vector rep-

resenting the expression of gene B in each cells’ neighborhood can be

approximated as

xnb = W̄x, (32)

where x is the column vector for expression of gene B. Similar to Eq. 25,

the random forest model is built with additional features depicting the ex-

pression of a collection of background genes G. The signaling strength

under this spatial distance is then indicated by the average of this feature
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importance score over a collection of downstream genes. Computing this

signaling strength for a sequence of spatial distances provides us a hint of

the effective range of this particular signaling.

1.9 Cell-cell communication

With the inferred spatial cell-cell distance, we can analyze cell-cell com-

munication by examining the intercellular signaling in a spatial setting.

1.9.1 Optimal transport cell-cell communication

For an intercellular signaling where we know the ligand, receptor(s) and

downstream genes, we interpret the signaling process as a transport prob-

lem where the ligands are transported from their source distribution (de-

scribed by the expression level of the ligand gene) to a destination distri-

bution (depicted by the expression level of receptors and the downstream

genes). Intuitively, if a cell highly expresses the receptor genes and the

expression of downstream genes are consistent with the known up/down

regulation relationship, this cell is likely to be a target cell in the signaling.

For the source distribution in the transport problem, we simply use the

expression level of ligands,

ωL(i) = Li/
∑

i

Li, (33)

where Li is the expression level of the ligand gene in cell i. A scoring is

defined to quantify how consistent is the expression pattern of downstream

genes according to the known up/down regulation relationships

βj =
1

nD

∑

ℓ

φ
(
Dj,ℓ; ηℓ, νℓ

)
, (34)

where nD is the number of downstream genes, Dj,ℓ is the ℓth downstream

gene in cell j, ηℓ is a scaling parameter for soft thresholding of gene ex-

pressions, and νℓ is positive for down-regulated genes and negative for

up-regulated genes. A bigger value for |νℓ| is used if a steeper boundary

is desired in the weight kernel defined in Eq. 13. If a strict consistency is
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desired, we can use multiplicative penalty

β̂j =

(
∏

ℓ

φ
(
Dj,ℓ; ηℓ, νℓ

)
)1/nD

. (35)

The destination distribution for the signaling is then described by

ωD(j) = Rj ∗ βj/(
∑

j

Rj ∗ βj). (36)

Another working assumption is that it is more likely for ligands to get to

their spatial neighbors than far away locations. This makes it natural to use

our spatial cell-cell distance matrix D̂sc as our cost matrix for the optimal

transport problem. Finally, we set up an optimal transport problem:

argmin
γ∈Rn×n

+

[
< γ, D̂sc >F

+ ρ
(
KL(γ1n|ωL) + KL(γT1n|ωD)

)

+ λ
∑

i,j

γi,j log(γi,j)
]

(37)

where KL is the KL divergence. Note that the last term (entropy regular-

ization) in Eq. 37 was used to accelerate computation in previous appli-

cations. In this signaling application, this entropy term accounts for the

stochasticity of ligand diffusion, i.e., it penalizes the case that all ligands

from a cell go to the same closest cell. The optimal transport plan γ∗
S(i, j)

is interpreted as a scoring for cell j receiving signal from cell i.
There are also cases where spatial distance for certain signaling is

available by applying inference methods or from knowledge. In this case,

we can tweak the transport cost in Eq. 37 to account for this constraint,

D̄sc(i, j) =

{
D̂sc(i, j), ifD̂sc(i, j) ≤ DS,

∞, otherwise,
(38)

where DS is the given spatial distance of signaling. The extremely high

cost of transporting between cells with distance farther than the signaling

distance prevents the mapping between these cells.
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Compared to methods that analyze cell pairs independently, this ap-

proach naturally addresses an important property of ligand-receptor sig-

naling, i.e. it is likely for a cell releasing signaling ligands to have shorter

signaling range if it is surrounded by more consumers of this ligands (cells

highly expressing receptors and show consistent behavior for downstream

genes). Further more, this approach implicitly takes into account the spa-

tial constraint and closely resembles the inferred cell-cell communication

networks that are explicitly constrained by inferred spatial distance for sig-

naling.

1.9.2 Additional spatial distance constraint in optimal transport cell-

cell communication

When prior knowledge about the effective range of a ligand is available, we

can further constrain the optimal transport inference of signaling. We im-

plement the extra spatial distance constraint by setting the transport cost

between cells that exceeds this distance to an excessively large number.

As a result, long connections will be eliminated and additional short con-

nections might merge. We discuss the effect of adding a spatial distance

constraint below.

On the single-cell level, for illustration, we consider a simple system

with three cells: a signal sender cell (cell 1) and two signal receiver cells

(cell 2 and cell 3) (see Supplementary Fig. 22). Cell 3 is more likely a

receiver cell than cell 2 (in other words, cell 3 has a greater mass than cell

2 as destinations in the optimal transport setup) but the distance between

cell 3 and cell 1, d(cell 1, cell 3) is greater than d(cell 1, cell 2). Without the

spatial constraint, we would identify a stronger connection between cell 1

and cell 3 than between cell 1 and cell 2 due to the conservation of mass.

If a spatial constraint that is between d(cell 1, cell 3) and d(cell 1, cell 2)

is applied, we would observe no mass going from cell 1 to cell 3 (thus the

previous strong connection vanishes) but more mass going from cell 1 to

cell 2 (the emergence of a shorter connection). In the optimal transport for-

mulation, the transportation cost (a large cost if moving much mass along

long distance) and the mass conservation violation (a penalty for unbal-

anced mass transport) are the two penalty terms in the objective function

to be minimized. When a spatial constraint is applied, a connection whose

distance is longer than this constraint will induce a huge penalty in the

transportation cost while the elimination of this connection might lead to
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the emergence of new short connections which only induces a moderate

penalty in mass conservation violation. Therefore, we may observe new

connections when a spatial constraint is applied.

On the cluster level, there are also new connections of visually long

distances when the spatial constraint is added (Supplementary Fig. 18).

This is because we used a geometric average to represent the location of

clusters. So there are clusters that are adjacent in space while their cluster

centers are visually distant (e.g. cluster 4.1 and cluster 3.1 in Supplemen-

tary Fig. 18b). As a result, we may observe a new connection between

clusters of visually long distance contributed by cell pairs of short distance

located near the interfaces where the two clusters meet.

1.9.3 Communication index

We also give another simple approach by adding a spatial weight term to

a scoring index similar to the one introduced in [26]. The scoring index

quantifying the likelihood of cell i signaling to cell j is constructed as

Si,j = φ(D̂sc(i, j); ηd, νd)
(αi,jβj)/(αi,j + βj)∑
k(αi,kβk)/(αi,k + βk)

, (39)

where αi,j measures the significance of ligand-(transporter)-receptor,

αi,j = φ(1/(LiRjTi); 1/ηα, να) (40)

where Li is the ligand in cell i, Ti is the sum of transporter for this ligand in

cell i, Rj is the corresponding receptor in cell j. The index βj measuring

the consistency of downstream genes in cell j is the same as constructed

in Eq. 34 and Eq. 35.

2 Assessment of model performance

2.1 Cross-validation of spatial gene expression predic-

tion

We evaluated the quality of the derived mapping between spatial data and

scRNA-seq data by assessing the accuracy in spatial gene expression pre-

diction. Specifically, we did a leave-one-out cross-validation. The spatial
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Drosophila embryo

AUC (b.) Rs (b.) RMSE (c.) Rs (c.)

SpaOTsc 0.876 0.495 0.225 0.424

DistMap 0.818 0.409 0.303 0.339

Achim 0.847 0.451 0.278 0.379

Zebrafish embryo (1) Zebrafish embryo (2)

AUC (b.) Rs (b.) AUC (b.) Rs (b.)

SpaOTsc 0.952 0.681 0.936 0.657

DistMap 0.939 0.663 0.926 0.642

Achim 0.929 0.645 0.887 0.579

Seurat (v1) 0.942 0.667 0.911 0.619

Table 1: Performance comparison on three pairs of datasets. AUC: area-

under-curve for receiver operating characteristic curve. Rs: Spearman’s

correlation coefficient. RMSE: root-mean-squared-error. b.: binarized spa-

tial data. c.: numerical spatial data. Drosophila embryo: spatial data and

scRNA-seq data both from ref. [13]. Zebrafish embryo (1): spatial data

and scRNA-seq data both from ref. [21]. Zebrafish embryo (2): spatial

data from ref. [21] and scRNA-seq data from ref. [25]. Methods compared

to: DistMap (ref. [13]), Achim (ref. [1], Seurat (ref. [21]).

expression of a gene is predicted using the rest of the spatial data and the

entire scRNA-seq data. Several metrics were used depending on the type

of spatial data (binary or continuous). Several established methods des-

ignated for this particular problem were considered: DistMap [13], Achim

[1], and Seurat [21].

2.2 Impact of using unbalanced and structured optimal

transport

We alter the parameters α and ρ in Eq. 6 to assess the usefulness of com-

bining structured transport and allowing unbalanced transport. The param-

eter α ranges from 0 meaning regular optimal transport without structured

information to 1 meaning the pure Gromov-Wasserstein distance. When

the parameter ρ takes the value of +∞, this becomes balanced optimal

transport and the balance constraint is relieved as ρ decreases. The exper-

18



iment results suggest that both relaxing the balance constraint and adding

the structured loss help improve the accuracy (Supplementary Fig. 1-4).

2.3 Intercellular gene-gene information flow

The concept of intercellular gene-gene information flow is in the perspec-

tive of information, i.e. how helpful observing a gene in the environment is

for inferring the a gene in the cell. The pairs of genes we identify may be

connected via various mechanisms of intercellular communications. Here

we test our approach on known signalings. We anticipate that the informa-

tion flow from a ligand gene to its target gene should be relatively higher.

While we are not able to cover all target genes in a signaling, the score

should still be higher on average if we examine a large unbiased collec-

tion of genes. We analyzed Dpp and Wg signaling and observed expected

patterns (Supplementary Fig. 29).

2.4 Effect of number of background genes used in inter-

cellular process analyses

Ideally, we would like to iterate over all the genes when computing the in-

tercellular gene information flows or to use all other genes as background

genes in the machine learning models when inferring distance for cell-cell

signaling. However, this can become computationally intractable espe-

cially in the case of partial information decomposition. Therefore, we rank

the genes by their correlation to the target gene and choose the top sub-

set as the background genes. We altered the number of top genes used

and the experiments shows that a moderate size of 50 genes is enough to

capture the key features (Supplementary Fig. 24-28).

3 Genes used in intercellular process analy-

ses

The the analysis of cell-cell communication for drosophila embryo, we con-

sidered Dpp and Wg signaling. We list here the genes involved.
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3.1 Cell-cell communication in drosophila embryo

Dpp signaling:

• Ligands: dpp

• Receptors: tkv, put, sax

• Downstream genes (up-regulated): Ance, zen2, zen, ush, Doc1,

Doc2, Doc3, tup, egr, kay, peb, C15

The downstream genes are taken from the supplementary table (S1 Dataset)

of [8]. The genes marked as ”Y” in the column called ”Dpp targets” and

are also present in scRNA-seq data are considered.

Wg signaling:

• Ligands: wg, Wnt5.

• Receptors: fz.

• Downstream genes (up-regulated): CycD, Jra, en.

• Downstream genes (down-regulated): dpp.

EGF signaling:

• Ligands: spi.

• Ligand transporters: rho.

• Receptors: Egfr.

• Downstream genes (up-regulated): aos, kek1, sty, rho, vn.

The genes CycD and Jra are taken from Kegg database [12] (Wnt sig-

naling pathway - Drosophila melanogaster). Two other genes en[10] and

dpp[29] are identified from literature. The genes for EGF signaling are

taken from [14].
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3.2 Cell-cell communication in zebrafish embryo

Wnt signaling:

• Ligands: wnt8a, wnt8-2, wnt11.

• Receptors: fzd7a, fzd8a, fzd8b, fzd10.

• Downstream genes (up-regulated): mycb, jun, fosl1a, ccnd1, ccnd2a,

ppardb, tcf7l2, tcf7l1a, lef1, dvl2.

• Downstream genes (down-regulated): gsk3aa.

BMP signaling:

• Ligands: bmp2b, bmp4, bmp7a.

• Receptors: bmpr1aa, bmpr1ab, bmpr1ba, bmpr1bb, bmpr2a, bmpr2b.

• Downstream genes (up-regulated): id1, id2a, id2b, id3, id4, smad1,

smad5, smad9.

FGF signaling:

• Ligands: fgf8a, fgf17.

• Receptors: fgfr4.

• Downstream genes (up-regulated): spry4.

The genes of Wnt and BMP signaling are taken from Kegg database

[12] (Wnt signaling pathway - Danio rerio and TGF-beta signaling pathway

- Danio rerio). The genes for FGF signaling are taken from [9].

3.3 Spatial distance of signaling in drosophila embryo

We filtered out downstream genes whose variances are too small in the

inference of signaling distance using random forest model. The following

downstream genes are considered:

• Dpp signaling: Ance, ush, Doc1, Doc2, Doc3, tup, egr

• Wg signaling: CycD, Jra, en, dpp, Ubx

In Wg signaling analysis, there is an additional gene Ubx [19] that was not

considered in cell-cell communication because it is unknown whether it is

up- or down-regulated by Wg.
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Supplementary Figures



Supplementary Figure 1

Performance of structured and unbalanced optimal transport.

The parameter � is the weight for structured transport penalty and � is the weight 
for the penalty term of unbalanced transport. (a) The auc of leave-one-out cross 
validation of drosophila embryo data with varying weights for unbalance penalty �
while the structured penalty weight �=0. (b) The auc of leave-one-out cross 
validation of drosophila embryo data with varying weights for structured penalty �
while only balanced transport is allowed (� = ∞). (c, d) Same plots as (a) and (b) 
for zebrafish embryo data. Both scRNA-seq data and spatial data are taken from 
(Satija, R. et al., Nature Biotech., 2015).



Supplementary Figure 2

Leave-one-out cross validation on drosophila embryo data.

The ground truth (left columns) and prediction (right columns) of spatial gene 
expression in the leave-one-out cross validation of the 84 genes in spatial data of 
drosophila embryo.
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Supplementary Figure 3

Additional drosophila embryo gene expression prediction.

The experimental data for these genes can be found in the Supplementary Figure 
S4 from Karaikos, Niko, et al. “The Drosophila embryo at single-cell transcriptome 
resolution.” Science 358.6360 (2017): 194-199. The gene m4 is skipped since it is 
absent in the scRNA-seq data. The prediction is based on the scRNA-seq data, 
and the spatial data which does not include the above genes.



Supplementary Figure 4

Leave-one-out cross-validation zebrafish embryo data.

The ground truth (left columns) and prediction (right columns) of spatial gene 
expression in the leave-one-out cross-validation of the 47 genes in spatial data of 
zebrafish embryo. Both scRNA-seq data and spatial data are taken from (Satija, 
R. et al., Nature Biotech., 2015).
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Macro Ave. AUC: 0.883 Macro Ave. AUC: 0.884

Macro Ave. AUC: 0.883 Macro Ave. AUC: 0.884

Seurat preprocessing Monocle3 preprocessing

Normalized data from the challenge* Count matrix

Supplementary Figure 5

Prediction accuracy with different preprocessing procedures.

The similarity between scRNA-seq data and the spatial data is quantified by 
Spearman’s correlation coefficient of the common genes. The numerical spatial 
data is used. The similarity within the scRNA-seq data is quantified by the 
Spearman’s correlation coefficient of first 50 principal components. *Normalized 
data downloaded from the DREAM Single Cell Transcriptomics Challenge 
(Synapse ID: syn15665609).
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Supplementary Figure 6

Visualization of single-cell data of drosophila embryo.

(a) Visualization using UMAP embedding based on only scRNA-seq data labeled 
with clustering (PCA+Louvain) using scRNA-seq data. (b) Same embedding as (a) 
labeled with spatially localized subclusters (cell-cell distance based knn-
graph+Louvain). (c, d) Similar to (a) and (b) with a UMAP embedding based on 
the spatial cell-cell distance.
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Supplementary Figure 7

Spatial summary of spatially localized subclusters in drosophila embryo data.

(a) A visualization of spatial arrangement of subclusters. The average cell-cell 
distance between cells from two subclusters are used to describe distances 
between the subclusters. This distance between subclusters is fed to umap to 
generate coordinates for visualization. In the network, each subcluster is 
connected to its three closest neighbors where a darker connection means a 
shorter distance. (b) Spatial origin distributions of the subclusters.
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Supplementary Figure 8

Visualization of the first single-cell data of zebrafish embryo.

Both scRNA-seq data and spatial data are taken from (Satija, R. et al., Nature 

Biotech., 2015). (a) Visualization using UMAP embedding based on only scRNA-
seq data labeled with clustering (PCA+Louvain) using scRNA-seq data. (b) Same 
embedding as (a) labeled with spatially localized subclusters (cell-cell distance 
based knn-graph+Louvain). (c, d) Similar to (a) and (b) with a UMAP embedding 
based on the spatial cell-cell distance.
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Supplementary Figure 9

Spatial summary of spatially localized subclusters in zebrafish embryo data.

Both scRNA-seq data and spatial data are taken from (Satija, R. et al., Nature 

Biotech., 2015). (a) A visualization of spatial arrangement of subclusters. The 
average cell-cell distance between cells from two subclusters are used to describe 
distances between the subclusters. This distance between subclusters is fed to 
umap to generate coordinates for visualization. In the network, each subcluster is 
connected to its three closest neighbors where a darker connection means a 
smaller distance. (b) Spatial origin distributions of the subclusters.

a

b

low high

probability



Supplementary Figure 10

Visualization of the second single-cell data of zebrafish embryo.

The spatial data is taken from (Satija, R. et al., Nature Biotech., 2015) and the 
scRNA-seq data is from (Wagner, Daniel E. et al. Science, 2018). (a) Visualization 
using UMAP embedding based on only scRNA-seq data labeled with clustering 
from the original paper of the scRNA-seq data. (b) Similar to (a) with a UMAP 
embedding based on the spatial cell-cell distance.
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Supplementary Figure 11

Visualization of the mouse visual cortex scRNA-seq data.

(a) A visualization of the scRNA-seq data by applying UMAP following a PCA 
reduction with 20 components. (b) Similar to (a) but with UMAP embedding of the 
inferred spatial distance between cells.
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Supplementary Figure 12

Clustering of genes based on spatial pattern in drosophila embryo data.

(a) A visualization of k-nearest-neighbor graphs (k=3) of genes where each node 
represents a gene and an edge means the two genes have similar spatial 
expression pattern. The differences between genes are quantified using 
Wasserstein distance with the spatial distance between single cells as the cost 
matrix for the optimal transport problem. Only highly variable genes are 
considered. (b) Average spatial patterns mapped to the original geometry for the 
gene clusters.
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Supplementary Figure 13

Clustering of genes based on spatial pattern in mouse visual cortex data.

(a) A visualization of k-nearest-neighbor graphs (k=3) of genes where each node 
represents a gene and an edge means the two genes have similar spatial 
expression pattern. The differences between genes are quantified using 
Wasserstein distance computed using the spatial data. (b) Average expression 
patterns for the clusters.
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Supplementary Figure 14

Cell-cell communication in zebrafish embryo through FGF signaling inferred using 
optimal transport.

(a) (zebrafish embryo) FGF signaling interpolated from the SpaOTsc cell-cell 
communication matrix and mapped to space using the mapping between cells and 
positions. The length of arrow indicates the signal sending probability of the 
position and the color shows the estimated signal receiver probability distribution 
over space. (b) FGF signaling summarized into cell clusters. 
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Supplementary Figure 15

Random forest inference for spatial range of Wg signaling with different number of 
background genes.

The inference of spatial range of Wg signaling in drosophila embryo data (ligand 
gene names: “wg”, “Wnt5” in data) using different number of background genes 
(Ng) in the random forest model. The grey band represents the 95% confidence 
interval. The experiments were repeated three times with similar results.
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Supplementary Figure 16

The effect of choosing different scaling parameters determining the significance of 
gene expression.

The scaling parameter can be regarded as a soft cutoff for deciding whether a 
gene is significantly expressed when studying the cell-cell communications. It can 
be observed for this Wg signaling analysis of the drosophila embryo that more 
significant signal senders and receivers can be prioritized by increasing this 
scaling parameter. Inside the violin plots are standard boxplots (median, 25th 
perceltile, 75th percentile, the bigger of minimum value and 25th percentile – 1.5 
interquartile range, and smaller of maximum value and 75th percentile + 1.5 
interquartile range). 
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Supplementary Figure 17

Random forest inference for spatial range of Dpp signaling with different number 
of background genes.

The inference of spatial range of Dpp signaling in drosophila embryo data using 
different number of background genes (Ng) in the random forest model. The grey 
band represents the 95% confidence interval. The experiments were repeated 
three times with similar results.
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Supplementary Figure 18

Comparison of space-aware and –unaware cell-cell communication analysis at 
subcluster level.

The cell-cell communications are summarized to subcluster level. Top 15 
communication arrows are plotted. The signaling ranges of Wg and Dpp are set to 
100 μm and 125 μm respectively in (b) and (c) where explicit spatial constraints 
are used. The colors of points correspond to subcluster labels. (a) The cell-cell 
distance is used as cost matrix for the optimal transport inference but no distance 
cutoff is applied. (b) Similar to (a) with additional spatial distance cutoffs. (c) A 
communication index computed independently for each cell pair with a weight 
term addressing spatial constraint. (d) Similar to (c) without spatial information. 
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Supplementary Figure 19

Optimal transport communication with and without spatial distance cutoff.

The coordinates of cells in the 2d plots are obtained by UMAP map based on the 
inferred spatial distances between cells. The top 10000 cell-cell communications 
are plotted as curved lines. The color of the connections are same as the source 
cells. The colors of points correspond to subcluster labels. (a, b) Spatial cell-cell 
distance is used as transport cost matrix and no cutoff distance for signaling is 
used. (c, d) Similar to (a) and (b) with additional explicit spatial distance cutoffs 
(100 μm for Wg and 125 μm for Dpp). 
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Supplementary Figure 20

Communication index with and without spatial constraint.

The coordinates of cells in the 2d plots are obtained by UMAP map based on the 
inferred spatial distances between cells. The top 10000 cell-cell communications 
are plotted as curved lines. The color of the connections are same as the source 
cells. The colors of points correspond to subcluster labels. (a) Space-constrained 
analysis of Wg signaling under a spatial distance of 100 μm. (b) Space-
constrained analysis of Dpp signaling under a spatial distance of 120 μm. (c, d) 
Top communications identified without spatial information.
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Supplementary Figure 21

The effect of adding spatial constraint to optimal transport cell-cell communication 
inference in drosophila embryo.

In the heat map each row corresponds to a signal sender cell and the signal 
receivers in each row is sorted based on their distance to the sender cell 
corresponding to that row.
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Supplementary Figure 22

An example showing the effect of adding spatial constraint to optimal transport 
cell-cell communication inference.

We consider an example system with one signal sending cell and two signal 
receiving cells. In the two example transport maps: one that transports all mass 
from the signal sender to a strong but distant signal receiver and one that 
transports all mass from the signal sender to a nearby but moderate signal 
receiver. When a spatial constraint is applied, the second transport map becomes 
more favorable which had higher cost than the first one when there is no spatial 
constrain.
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Supplementary Figure 23

Cell-cell communication in drosophila embryo through EGF/EGFR signaling 
inferred using optimal transport.

(a) The coordinates of cells in the 2d plots are obtained by UMAP map based on 
the inferred spatial distances between cells. The top 10000 cell-cell 
communications are plotted as curved lines. The color of the connections are 
same as the source cells. The colors of points correspond to cluster labels. (b) 
The communications summarized to subclusters.
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Supplementary Figure 24

PID inference of intercellular gene regulation in drosophila data with different 
number of background genes under a spatial range of 25 μm.

The ith row and jth column quantifies the unique information provided about the jth
gene (target gene) by the ith gene (source gene) in a spatial neighborhood of 25 
μm. Different numbers of background genes (Ng=10, 20, 50) are considered when 
computing the unique information. The genes with the highest intracellular 
correlation with the target genes are selected as background genes respectively 
for each target gene. The scatter plot shows comparison of the nonzero entries of 
the matrices quantified by the Pearson correlation coefficient.
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Supplementary Figure 25

PID inference of intercellular gene regulation in drosophila data with different 
number of background genes under a spatial range of 50 μm.

The ith row and jth column quantifies the unique information provided about the jth
gene (target gene) by the ith gene (source gene) in a spatial neighborhood of 50 
μm. Different numbers of background genes (Ng=10, 20, 50) are considered when 
computing the unique information. The genes with the highest intracellular 
correlation with the target genes are selected as background genes respectively 
for each target gene. The scatter plot shows comparison of the nonzero entries of 
the matrices quantified by the Pearson correlation coefficient.
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Supplementary Figure 26

PID inference of intercellular gene regulation in drosophila data with different 
number of background genes under a spatial range of 75 μm.

The ith row and jth column quantifies the unique information provided about the jth
gene (target gene) by the ith gene (source gene) in a spatial neighborhood of 75 
μm. Different numbers of background genes (Ng=10, 20, 50) are considered when 
computing the unique information. The genes with the highest intracellular 
correlation with the target genes are selected as background genes respectively 
for each target gene. The scatter plot shows comparison of the nonzero entries of 
the matrices quantified by the Pearson correlation coefficient.
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Supplementary Figure 27

PID inference of intercellular gene regulation in drosophila data with different 
number of background genes compared to using 500 background genes.

The gene-gene information flow among the 20 most variable genes in the 
drosophila datasets were inferred using various numbers of background genes 
ranging from 10 to 500. All obtained gene-gene interactions were compared to 
using 500 background genes using the Pearson’s correlation coefficients.
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Supplementary Figure 28

PID inference of intercellular gene regulation in the mouse visual cortex data for 
with different number of background genes compared to using 300 background 
genes.

The gene-gene information flow among the 20 most variable genes in the 
drosophila datasets were inferred using various numbers of background genes 
ranging from 1 to 300. All obtained gene-gene interactions were compared to 
using 300 background genes using the Pearson’s correlation coefficients. The 
distance scale is set to 1/10 of the longest spatial distance among the single cells.
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Supplementary Figure 29

Gene-gene information flows for signaling pathways.

We evaluate the PID approach to quantifying gene-gene information flow by 
applying it to known ligands and downstream genes involved in intercellular 
signaling. To this end, we compute the spatial gene-gene information flow from the 
ligand genes to a collection of highly variable genes. The flows to downstream 
target genes in the signaling pathway and to other genes are compared. The 
former is expected to be higher than the later. Spatial ranges of 125 μm and 100 
μm (inferred by SpaOTsc) are used for Dpp signaling and Wg signaling 

respectively. Inside the violin plots are boxplots (median, 25th perceltile, 75th 
percentile, the bigger of minimum value and 25th percentile – 1.5 interquartile 
range, and smaller of maximum value and 75th percentile + 1.5 interquartile 
range). The numbers of data points for the violin plots from left to right are 7, 941, 
5, 943. 

G
e

n
e

-g
e

n
e
 in

fo
rm

a
ti
o

n
 f
lo

w

Dpp Wg

Downstream genes

Other genes



HighLow
Likelihood

Signal sending cells

Signal receiving cells

Supplementary Figure 30

The likelihood of signal sending and receiving cells of the RNA seqFISH+ data of 
mouse olfactory bulb.

The seven fields in the RNA seqFISH+ data are plotted separately.
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Supplementary Figure 31

Inferred cell-cell communications in the RNA seqFISH+ data of mouse olfactory 
bulb.

The color of links correspond to the signal sending cells. The cell-cell 
communications were inferred for each field separately.
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Supplementary Figure 32

The likelihood of signal sending and receiving cells of the scRNA-seq data of 
mouse olfactory bulb mapped to the space of Slide-seq data.

Each dot corresponds to a single cell in the scRNA-seq data and the position is 
determined based on the SpaOTsc mapping of this scRNA-seq data and the 
reference Slide-seq data.
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Supplementary Figure 33

The likelihood of signal sending and receiving cells of the scRNA-seq data (WT1) 
of mouse olfactory bulb mapped to the space of RNA seqFISH+ data.

Each dot corresponds to a single cell in the scRNA-seq data and the position is 
determined based on the SpaOTsc mapping of this scRNA-seq data and the 
reference RNA seqFISH+ data.
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Supplementary Figure 34

Visualization of the scRNA-seq data of mouse olfactory bulb.

A low-dimensional visualization of the scRNA-seq data of mouse olfactory bulb by 
performing UMAP on the first 20 principle components colored by cluster identities 
obtained by Louvain analysis.



Supplementary Figure 35

Similarity of cluster level cell-cell communication patterns among the samples in 
scRNA-seq data of mouse olfactory bulb.

The cell-cell communications inferred for each sample in scRNA-seq data using 
the RNA seqFISH+ or the Slide-seq data as the spatial reference. The cell-cell 
communications were summarized into the 39 clusters and Pearson’s correlation 
coefficient was used to measure the similarity between the communication 
patterns.

Spatial reference: 
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